Riemann hypothesis from the Dedekind psi function
نویسنده
چکیده
Let P be the set of all primes and ψ(n) = n ∏ n∈P,p|n(1 + 1/p) be the Dedekind psi function. We prove that, under the assumption that the n-th prime pn is always larger than the first Chebyshev function θ(pn), the Riemann hypothesis is satisfied if and only if f(n) = ψ(n)/n − e log logn < 0 for all integers n > n0 = 30 (D), where γ ≈ 0.577 is Euler’s constant. This inequality is equivalent to Robin’s inequality that is recovered from (D) by replacing ψ(n) with the sum of divisor function σ(n) ≥ ψ(n) and the lower bound by n0 = 5040. For a square free number, both arithmetical functions σ and ψ are the same. We also prove that any exception to (D) may only occur at a positive integer n satisfying ψ(m)/m < ψ(n)/n, for any m < n, hence at a primorial number Nn or at one its multiples smaller than Nn+1 (Sloane sequence A060735). According to a Mertens theorem, all these candidate numbers are found to satisfy (D): this implies that the Riemann hypothesis is true. PACS numbers: 11A41, 11N37, 11M32
منابع مشابه
Complements to Li's Criterion for the Riemann Hypothesis
In a recent paper Xian-Jin Li showed that the Riemann Hypothesis holds if and only if n = P 1?(1?1==) n has n > 0 for n = 1; 2; 3; : : : where runs over the complex zeros of the Riemann zeta function. We show that Li's criterion follows as a consequence of a general set of inequalities for an arbitrary multiset of complex numbers and therefore is not speciic to zeta functions. We also give an a...
متن کاملThe Riemann hypothesis for Weng ’ s zeta function of Sp ( 4 ) over Q ∗
As a generalization of the Dedekind zeta function, Weng defined the high rank zeta functions and proved that they have standard properties of zeta functions, namely, meromorphic continuation, functional equation, and having only two simple poles. The rank one zeta function is the Dedekind zeta function. For the rank two case, the Riemann hypothesis is proved for a general number field. Recently...
متن کاملOn the Theory of Zeta-functions and L-functions
In this thesis we provide a body of knowledge that concerns Riemann zeta-function and its generalizations in a cohesive manner. In particular, we have studied and mentioned some recent results regarding Hurwitz and Lerch functions, as well as Dirichlet’s L-function. We have also investigated some fundamental concepts related to these functions and their universality properties. In addition, we ...
متن کاملSpectral analysis and the Riemann hypothesis
The explicit formulas of Riemann and Guinand-Weil relate the set of prime numbers with the set of nontrivial zeros of the zeta function of Riemann. We recall Alain Connes’ spectral interpretation of the critical zeros of the Riemann zeta function as eigenvalues of the absorption spectrum of an unbounded operator in a suitable Hilbert space. We then give a spectral interpretation of the zeros of...
متن کاملThe Riemann Hypothesis for Elliptic Curves
and extended analytically to the whole complex plane by a functional equation (see [8, p. 14]). The original Riemann hypothesis asserts that the nonreal zeros of the Riemann zeta function ζ(s) all lie on the line Re(s) = 1/2. In his monumental paper [11] of 1859, Riemann made this assertion in order to derive an expression for the deviation of the exact number of primes ≤ x, which is denoted by...
متن کامل